深度学习:导读手册
(美)特伦斯·谢诺夫斯基更新时间:2019-04-17 09:16:29
最新章节:第三部分 深度学习要事年表开会员,本书8折购 >
全球科技巨头纷纷拥抱深度学习,自动驾驶、AI医疗、语音识别、图像识别、智能翻译以及震惊世界的AlphaGo,背后都是深度学习在发挥神奇的作用。深度学习是人工智能从概念到繁荣得以实现的主流技术。经过深度学习训练的计算机,不再被动按照指令运转,而是像自然进化的生命那样,开始自主地从经验中学习。本书作者特伦斯·谢诺夫斯基是全球人工智能十大科学家之一、深度学习先驱及奠基者,亲历了深度学习在20世纪70年代到90年代的寒冬。但他和一众开拓者,利用大数据和不断增强的计算能力,终于在神经网络算法上取得重大突破,实现了人工智能井喷式的发展。作为深度学习领域的通识作品,本书以恢弘的笔触,通过3个部分全景展现了深度学习的发展、演变与应用,首次以亲历者视角回溯了深度学习浪潮在过去60年间的发展脉络与人工智能的螺旋上升,并前瞻性地预测了智能时代的商业图景。
品牌:中信出版社
上架时间:2019-02-01 00:00:00
出版社:中信出版社
本书数字版权由中信出版社提供,并由其授权上海阅文信息技术有限公司制作发行
深度学习:导读手册最新章节
查看全部(美)特伦斯·谢诺夫斯基
主页
同类热门书
最新上架
- 会员
自适应和反应式机器人控制:动态系统法
本书主要介绍如何通过动态系统学习控制律,从而使机器人具备实时反应能力。本书首先介绍机器人学习数据的收集方法,然后重点讲解使用动态系统学习控制律的核心技术,使用动态系统进行轨迹规划的方法,以及使用动态系统进行柔性控制和力控制的方法。本书提供大量应用示例,包括机械臂、拟人手和仿人机器人的全身控制等。本书要求读者熟悉关于机器人控制的基础知识,并熟悉机器学习、统计、优化以及动态系统等相关内容,适合作为高等计算机20.3万字 空间计算:人工智能驱动的新商业革命
空间计算是一种不断发展的以三维世界为中心的计算形式和交互形式,是以计算机视觉为基础的高阶应用。其核心是使用AI、计算机视觉和扩展现实将虚拟体验融入物理世界,让用户摆脱屏幕的束缚,自然地与数字世界中的对象互动,就像与真实世界中的对象互动一样。随着生成式AI的爆发,空间计算平台将拥有更加丰富的内容,将在很大程度上改变我们的生活和工作,重新定义商业模式,并改变我们与技术和整个世界互动的方式,推动我们进入计算机12.1万字- 会员
深度学习与计算机视觉:项目式教材
本书基于国产自主可控龙芯处理器,系统地介绍计算机视觉领域的基本理论与实践,并结合当前主流的深度学习框架和龙芯平台以项目式教学的形式讲述任务的实施。本书主要包括OpenCV基础功能实战、深度学习框架的部署、计算机视觉技术基础知识、图像分类网络的部署、目标检测网络的部署、图像分割网络的部署、龙芯智能计算平台模型的训练和龙芯智能计算平台的推理部署等内容。通过阅读本书,读者能够了解和掌握深度学习在计算机视计算机10万字 - 会员
Python+ChatGPT办公自动化实战
本书对Python在职场办公领域的应用进行了系统梳理与介绍。全书共12章,第1~6章主要围绕与Python办公自动化相关的基础知识展开;第7~12章包括走进ChatGPT,文件操作自动化,Word、PPT办公自动化,Excel办公自动化,PDF文档操作自动化和邮件发送,数据分析与可视化等内容。本书提供了丰富的案例,并配有相关资源,以增强读者的实战能力。本书内容易学易懂,适合追求高效工作、对办公自动计算机11.9万字 - 会员
人工智能对北京市就业的影响与应对
人工智能作为数字经济及高精尖产业发展的原创性、引领性和代表性技术,在北京国际科技创新中心、全球数字经济标杆城市的建设中迎来了发展的“关键窗口期”和“政策红利期”,成为北京高质量发展的重要引擎和打造高质量就业“北京样板”的重大机遇。本书是一部经济学学术专著,书稿导向积极。本书采用多元数据来源,运用案例研究法、舆情分析与大数据分析法等多种研究方法,从产业与就业动态匹配视角,聚焦人工智能对北京市就业的影计算机25.6万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
机器学习教程(微课视频版)
本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字 - 会员
知识图谱从0到1:原理与Python实战
本书旨在帮助读者全面理解知识图谱的基本原理和概念。通过清晰的解释和实例,读者将深入了解知识图谱的构建、表示、推理等关键知识点。此外,本书通过提供代码实战,引导读者亲自动手构建知识图谱,并应用各种技术和工具进行实践。这种实践性的讲解方法可帮助读者更深入地理解知识图谱的实际应用。本书的目标是帮助读者全面理解知识图谱的基本原理和概念,并通过代码实战构建知识图谱。同时,本书也提供了关于大语言模型与知识图谱计算机9.6万字 - 会员
智能控制与强化学习:先进值迭代评判设计
在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次计算机8.7万字
同类书籍最近更新
- 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI人工智能15.8万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用人工智能8.1万字