会员
Learn Amazon SageMaker
更新时间:2021-04-09 23:11:46
最新章节:Leave a review - let other readers know what you think开会员,本书免费读 >
Quicklybuildanddeploymachinelearningmodelswithoutmanaginginfrastructure,andimproveproductivityusingAmazonSageMaker’scapabilitiessuchasAmazonSageMakerStudio,Autopilot,Experiments,Debugger,andModelMonitorKeyFeatures*Build,train,anddeploymachinelearningmodelsquicklyusingAmazonSageMaker*Analyze,detect,andreceivealertsrelatingtovariousbusinessproblemsusingmachinelearningalgorithmsandtechniques*Improveproductivitybytrainingandfine-tuningmachinelearningmodelsinproductionBookDescriptionAmazonSageMakerenablesyoutoquicklybuild,train,anddeploymachinelearning(ML)modelsatscale,withoutmanaginganyinfrastructure.IthelpsyoufocusontheMLproblemathandanddeployhigh-qualitymodelsbyremovingtheheavyliftingtypicallyinvolvedineachstepoftheMLprocess.ThisbookisacomprehensiveguidefordatascientistsandMLdeveloperswhowanttolearntheinsandoutsofAmazonSageMaker.You’llunderstandhowtousevariousmodulesofSageMakerasasingletoolsettosolvethechallengesfacedinML.Asyouprogress,you’llcoverfeaturessuchasAutoML,built-inalgorithmsandframeworks,andtheoptionforwritingyourowncodeandalgorithmstobuildMLmodels.Later,thebookwillshowyouhowtointegrateAmazonSageMakerwithpopulardeeplearninglibrariessuchasTensorFlowandPyTorchtoincreasethecapabilitiesofexistingmodels.You’llalsolearntogetthemodelstoproductionfasterwithminimumeffortandatalowercost.Finally,you’llexplorehowtouseAmazonSageMakerDebuggertoanalyze,detect,andhighlightproblemstounderstandthecurrentmodelstateandimprovemodelaccuracy.BytheendofthisAmazonbook,you’llbeabletouseAmazonSageMakeronthefullspectrumofMLworkflows,fromexperimentation,training,andmonitoringtoscaling,deployment,andautomation.Whatyouwilllearn*Createandautomateend-to-endmachinelearningworkflowsonAmazonWebServices(AWS)*Becomewell-versedwithdataannotationandpreparationtechniques*UseAutoMLfeaturestobuildandtrainmachinelearningmodelswithAutoPilot*Createmodelsusingbuilt-inalgorithmsandframeworksandyourowncode*TraincomputervisionandNLPmodelsusingreal-worldexamples*Covertrainingtechniquesforscaling,modeloptimization,modeldebugging,andcostoptimization*AutomatedeploymenttasksinavarietyofconfigurationsusingSDKandseveralautomationtoolsWhothisbookisforThisbookisforsoftwareengineers,machinelearningdevelopers,datascientists,andAWSuserswhoarenewtousingAmazonSageMakerandwanttobuildhigh-qualitymachinelearningmodelswithoutworryingaboutinfrastructure.KnowledgeofAWSbasicsisrequiredtograsptheconceptscoveredinthisbookmoreeffectively.SomeunderstandingofmachinelearningconceptsandthePythonprogramminglanguagewillalsobebeneficial.
品牌:中图公司
上架时间:2020-08-27 00:00:00
出版社:Packt Publishing
本书数字版权由中图公司提供,并由其授权上海阅文信息技术有限公司制作发行
Learn Amazon SageMaker最新章节
查看全部- Leave a review - let other readers know what you think
- Other Books You May Enjoy
- Summary
- Building a cost optimization checklist
- Compiling models with Amazon SageMaker Neo
- Deploying a model with Amazon Elastic Inference
- Deploying a multi-model endpoint
- Autoscaling an endpoint
- Technical requirements
- Chapter 13: Optimizing Prediction Cost and Performance
同类热门书
最新上架
- 会员
CISA考试复习手册(第28版)
随着计算机技术在管理中的广泛运用,传统的管理、控制、检查和审计技术都面临着巨大的挑战。在网络经济迅猛发展的今天,IT审计师已被公认为全世界范围内非常抢手的高级人才。享誉全球的ISACA(国际信息系统审计协会)为全球专业人员提供知识、职业认证并打造社群网络,其推出的CISA(注册信息系统审计师,CertifiedInformationSystemsAuditor)认证在全球受到广泛认可,并已进经济47万字 - 会员
舞弊审计研究
我国资本市场不断暴露出来的上市公司财务舞弊案使注册会计师审计的执业能力、道德水准受到社会公众的普遍质疑,行业公信力受到严重影响。2016年独立审计准则的再次修订以及对注册会计师舞弊揭示责任的强化都要求独立审计的理念与导向发生变化,舞弊审计势在必行。本书采用规范研究与案例研究结合的方法,首先阐述国内为以及本书关于舞弊概念的界定,然后综述关于舞弊动因及舞弊识别的方法,最后提出舞弊审计的概念框架,并结合经济22.8万字