机器学习算法实践:推荐系统的协同过滤理论及其应用
上QQ阅读APP看书,第一时间看更新

参考文献

[1] 林耀进,张佳,林梦雷,等.一种基于模糊信息熵的协同过滤推荐方法[J].山东大学学报(工学版),2016(05):13-20.

[2] 王俊,李石君,杨莎.一种新的用于跨领域推荐的迁移学习模型[J].计算机学报,2017(10):2367-2380.

[3] Do Thi Lien, Nguyen Duy Phuong. Collaborative Filtering with a Graph-based Similarity Measure[C]. Computing, Management and Telecommunications (Com Man Tel) , 2014 International Conference on. IEEE. Da Nang, 2014, 251-256.

[4] Bobadilla J, Ortega F, Hernando A, et al. Recommender Systems Survey[J]. Knowledge-Based Systems, 2013, 46 (1): 109-132.

[5] Xiao Han, Leye Wang, Reza Farahbakhsh, et al. CSD: A Multi-User Similarity Metric for Community Recommendation in Online Social Networks[J]. Expert Systems with Applications, 2016, 53: 14-26.

[6] Rong Hui-gui, Huo Sheng-xu, Hu Chun-hua, et al. User Similarity-based Collaborative Filtering Recommendation Algorithm[J]. Journal on Communications, 2014, 35 (2): 16-24.

[7] Wu Yi-tao, Zhang Xing-ming, Wang Xing-mao, et al. User Fuzzy Similarity-based Collaborative Filtering Recommendation Algorithm[J]. Journal on Communications, 2014, 35 (2): 16-24.

[8] Sun Da-ming, Zhang Bin, Zhang Shu-bo, et al. A Popularity Versus Similarity Query Recommendation Strategy[J]. Journal of Chinese Computer Systems, 2016, 37 (6): 1121-1125.

[9] Zheng Cui-cui, Lin Li. Research on Method of Similarity Measurement in Collaborative Filter Algorithm[J]. Computer Engineering and Applications, 2014, 50 (8): 147-149.

[10] Jesus Bobadilla, Fernando Ortega, Antonio Hernando, et al. A Similarity Metric Designed to Speed Up, Using Hardware, the Recommender Systemsk-nearest Neighbors Algorithm[J]. Knowledge-Based Systems, 2013, 51 (1): 27-34.

[11] Parivash Pirasteh, Dosam Hwang, Jai E Jung. Weighted Similarity Schemes for High Scalability in User-based Collaborative Filtering[J]. Mobile Networks & Applications, 2015, 20 (4): 497-507.

[12] Sun Hui-feng, Chen Jun-liang, Yu Guang, et al. Jac UOD: A New Similarity Measurement for Collaborative Filtering[J]. Journal of Computer Science & Technology, 2012, 27 (6): 1252-1260.

[13] Thorat P B, Goudar R M, Barve S. Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System[J]. International Journal of Computer Applications, 2015, 110 (4): 31-36.

[14] Lops P, de Gemmis M, Semeraro G, et al. Content-based and Collaborative Techniques for Tag Recommendation: an Empirical Evaluation[J]. Journal of Intelligent Information Systems, 2013, 40 (1): 41-61.

[15] Goldberg D, Oki B M, Oki B M, et al. Using Collaborative Filtering to Weave an Information Tapestry[J]. Communications of the Acm. , 1992, 35 (12): 61-70.

[16] Wolff J G. A Scaleable Technique For Best-Match Retrieval of Sequential Information Using Metrics-Guided Search[J]. Journal of Information Science, 1994, 20 (1): 16-28.

[17] Pham X H, Nguyen T T, Jung J J, et al. -Spear: A New Method for Expert Based Recommendation Systems[J]. Journal of Cybernetics, 2014, 45 (2): 165-179.

[18] Guo G, Zhang J, Thalmann D. Merging Trust in Collaborative Filtering to Alleviate Data Sparsity and Cold Start[J]. Knowledge-Based Systems. 2014, 57 (2): 57-68.

[19] Ortega F, Hernando A, Bobadilla J, et al. Recommending Items to Group of Users Using Matrix Factorization based Collaborative Filtering[J]. Information Sciences, 2016, 345 (C): 313-324.

[20] Zhou X, He J, Huang G, et al. SVD-based Incremental Approaches for Recommender Systems[J]. Journal of Computer & System Sciences, 2015, 81 (4): 717-733.

[21] Zhou T, Shan H, Banerjee A, et al. Kernelized Probabilistic Matrix Factorization: Exploiting Graphs and Side Information[J]. SDM, 2012.

[22] Vozalis M G, Margaritis K G. Applying SVD on Item-based Filtering[C]//null. IEEE Computer Society, 2005: 464-469.

[23] 刘庆鹏,陈明锐.优化稀疏数据集提高协同过滤推荐系统质量的方法[J].计算机应用,2012,4,(4):1082-1085.

[24] Chen W. Multi-Collaborative Filtering Trust Network For Online Recommendation[J]. Information Systems Frontiers, 2015, 15 (4): 533-551.

[25] Chen C, Zeng J, Zheng X, et al. Recommender System-based on Social Trust Relationships[C]//e-Business Engineering (ICEBE) , 2013 IEEE 10th International Conference on. IEEE, 2013: 32-37.

[26] Moradi P, Ahmadian S, Akhlaghian F. An Effective Trust-based Recommendation Method Using a Novel Graph Clustering Algorithm[J]. Physica A Statistical Mechanics & Its Applications, 2015, 436: 462-481.

[27] 原福永,蔡红蕾,李莉.加入用户偏好的非均匀资源分配推荐算法[J].小型微型计算机系统,2015,36(2):205-210.

[28] 燕彩蓉,张青龙,赵雪,等.基于广义高斯分布的贝叶斯概率矩阵分解方法[J].计算机研究与发展,2016,52(12):2793-2800.

[29] 王东.基于贝叶斯网络的在线社交网络推荐技术研究[D].南京:南京邮电大学,2016.

[30] 赵海燕,熊波,陈庆奎,等.基于信任传播的概率矩阵分解算法[J].小型微型计算机系统,2016,37(5):895-901.

[31] 郭弘毅,刘功申,苏波,等.融合社区结构和兴趣聚类的协同过滤推荐算法[J].计算机研究与发展,2016,53(8):1664-1672.

[32] Pirasteh P, Hwang D, Jung J J. Exploiting Matrix Factorization to Asymmetric User Similarities in Recommendation Systems[J]. Knowledge-Based Systems, 2015, 83 (1): 51-57.

[33] Koren Y. Collaborative Filtering with Temporal Dynamics[J]. Communications of the ACM, 2010, 53 (4): 89-97.

[34] Levy O, Goldberg Y. Neural Word Embedding as Implicit Matrix Factorization[J]. Advances in Neural Information Processing Systems, 2014, 3: 2177-2185.

[35] Grasedyck L, Kluge M, Krämer S. Variants of Alternating Least Squares Tensor Completion in the Tensor Train Format[J]. Siam Journal on Scientific Computing, 2015, 37 (5): A2424-A2450.

[36] Finlayson G D, Darrodi M M, Mackiewicz M. The Alternating Least Squares Technique for Nonuniform Intensity Color Correction[J]. Color Research & Application, 2015, 40 (3): 232-242.