![电路分析基础](https://wfqqreader-1252317822.image.myqcloud.com/cover/99/27126099/b_27126099.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.2.2 电阻的并联
图2-3(a)所示为n个电阻的并联组合。电阻并联时,各电阻两端的电压是同一电压。根据KCL,可得
i=i1+i2+…+in=G1u+G2u+…+Gnu=(G1+G2+…+Gn)u
式中,G1,G2,…,Gn为电阻R1,R2,…,Rn的电导。若用一个电阻替代这n个电阻,如图2-3(b)所示,且使该电阻的电导为:
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00036004.jpg?sign=1738852288-5SUIgu3EFe3QQDiQSpXrxFJCDP86EYy0-0-4ff4bca6ebbe37f65ea60f2b3ddb62c6)
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00037001.jpg?sign=1738852288-jovH5Bew1OxdSdW8nRhCkqlBMlWbs4XJ-0-137094d9bd4c1fb11dde9c085304cd97)
图2-3 电阻的并联
显然,Geq为这n个电阻并联后的等效电导。并联后的等效电阻Req可由式(2-3)推得
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00037002.jpg?sign=1738852288-rMyqYoiTJFM9jKQ85OSgtkroJ0aD4cdD-0-8023dffb459281b749d0c2366067ac09)
即
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00037003.jpg?sign=1738852288-1Asaz1qghC0nE4q3SqTeJaCNQUy5LFan-0-727e04eedf966d6eb3af070b1bb3d26a)
不难看出,并联等效电阻小于任一个并联的电阻。
电阻并联时,各个电阻的电流为
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00037004.jpg?sign=1738852288-qeZHwsqtjcSpfgyZLlntAlYN0P5eSyPH-0-d36706992ce17f29b13bd08ea1ae57e9)
上式说明,电阻并联时,各个电阻的电流与其电导值成正比。或者说,总电流是根据各个并联电阻的电导值进行分配的,电导值大的电阻上分得的电流也大。式(2-5)称为并联分流公式。
在电路分析中,经常遇到两个电阻并联的情况,如图2-4所示。由式(2-4)推出等效电阻为
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00037005.jpg?sign=1738852288-8G1Iv8e3UguhMOzdxygjRiFewug9nHAo-0-1b3da808341da281586f3b06f1ad82f3)
图2-4 两个电阻的并联
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00037006.jpg?sign=1738852288-nEadaRoJtiwqEIHKUKTng33LPZm7Rlwz-0-cb5e5e4dad06b05e97a274100f6adcc1)
两个并联电阻的分流可由式(2-5)推出:
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00038001.jpg?sign=1738852288-CdXPWy6sjc3uGI2wZgR6iZEEuBV9Lg3g-0-bc60648f0300422e04bf59c94d558a90)
若电阻的连接中既有串联又有并联,则称为电阻的串并联或混联。对于电阻混联电路,可依据其串、并联关系逐次对电路进行等效变换,最终等效为一个电阻。如图2-5所示,R3、R4串联后与R2并联,再与R1串联,其等效电阻为
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00038002.jpg?sign=1738852288-aZIWMzXGmqyfaoCd8vOhu8MTnGdPTegH-0-dd7c3b1bd46ebf8e1add5a058a517c5b)
图2-5 电阻的混联
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00038003.jpg?sign=1738852288-11qQenPDpmTqipIs8MDjeg4dMtSmzUPo-0-d63fb33c87647fb77342cf4335c6f116)
【例2-1】在图2-5(a)所示电路中,已知:R1=R2=3Ω,R3=2Ω,R4=4Ω,us=6V。求各支路电流以及电阻R2和R4上的电压u2和u4。
解:各支路电流和电压的参考方向如图中所示。根据电阻的串、并联关系,将电路等效为如图2-5(b)所示,等效电阻为
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00038004.jpg?sign=1738852288-bBu2j0HfiDa2QKJZGql6hq01YLhQJksP-0-a9c475ac2525bf537aad8a624e659112)
由图2-5(b)可知:
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00038005.jpg?sign=1738852288-tzltik9wZhG8SX4Rqyw9JvFTkT31SmQc-0-612005b29f60c2a90bff5800fa99b04f)
回到原电路,即图2-5(a),根据分流公式,求得
![](https://epubservercos.yuewen.com/1A43D2/15489082405466306/epubprivate/OEBPS/Images/img00038006.jpg?sign=1738852288-5HkhmAz3YX6sdpXX8CCs0zcMYSu2hHXa-0-409ec671c620d6653ce501be89533054)
进而求得
u2=R2i1=3×0.8=2.4(V)
u4=R4i2=4×0.4=1.6(V)