
上QQ阅读APP看书,第一时间看更新
2.5.2 控制绕组和转子之间的耦合稳态模型
将CW电压的方向反向,令dq旋转坐标系的角速度ω=ω1,由式(2-6)可得ω1-ωr(p1+p2)=-ω2,并考虑到在稳态时BDFIG动态模型中的微分项为零,于是从式(2-58)~式(2-61)可以推导出

式中,Lσ2+L2r=L2,;Lσ2为CW的单相漏感;
为转子的控制子部分的单相漏感;L2r为CW与转子之间的单相互感。
分别将式(2-75)代入式(2-74)、将式(2-77)代入式(2-76)可以得到

由式(2-6)、式(2-62)和式(2-63)可以得出ω2=-s1ω1/s2,将其代入式(2-78)可得

根据式(2-79)和式(2-80)可以得到如图2.4所示的CW和转子之间的耦合稳态模型。

图2.4 CW和转子之间的耦合稳态模型