![MATLAB金融风险管理师FRM(高阶实战)](https://wfqqreader-1252317822.image.myqcloud.com/cover/187/36862187/b_36862187.jpg)
3.2 直线
丛书第一册第5章介绍了一次函数的几种定义方式,本节将采用向量方式定义一次函数。首先用法向量方法定义平面直线。
如图3.10所示,直线法向量为n = [a, b]T,A点为直线上一个定点,它的坐标为(x0, y0)。直线上任意一点P(x, y)和A构成向量[x – x0, y – y0]T 垂直于法向量n;因此,两者内积为标量0,即:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P110_3712453.jpg?sign=1738904091-vPbBUkhQWtAfM8o4QnZ1vfbcMmTfBeu8-0-74f458e44ed4d52b179dbdee4c1e0666)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P110_3712454.jpg?sign=1738904091-ciCmBvGHXEMxXQzDGqixMhtUbxas4SYi-0-0b8da5a19502edc082c74fc55762d1ab)
图3.10 用法向量和定点来定义平面直线
上式即直线法向量和直线上一点构造直线函数。
如图3.11所示,定点A (x0, y0)位于直线上,P点为直线上任意一点。直线切向量为τ = [a, b]T,平行于A和P构成的向量。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P111_3712457.jpg?sign=1738904091-TdhgFIjj2XIs2ZvZQMk5SCNc0VXa0DH6-0-5fad543f00371c5cc9a8a91e2132bfff)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P111_3712458.jpg?sign=1738904091-Sv8C4RdfaAQzRbm7D0dTwoRnxY3GTYPD-0-c780eeb0c16585e4f0070e13b92b6f59)
图3.11 用切向量和定点来定义平面直线
上式中,t为任意实数。上式实际上是一个参数方程(parametric equation)。x-y平面直角坐标系中,任意一点(x, y)横纵坐标都是t的函数。本册很多章节会使用参数方程绘制各种曲线,表3.1总结了常用圆锥曲线参数方程。
表3.1 常见圆锥曲线参数方程
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-T111_3712459.jpg?sign=1738904091-Q6NNDiWXjtDYSlSNCUDszlCUNMMkqNNb-0-c251a6abdd43dc82d31673a77ffd9369)
参数方程用来绘制复杂平面或者空间曲线,如下例:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P112_3712463.jpg?sign=1738904091-a0aHKY4V2FMcZ45bCuGbXKdIDTCDABtC-0-ce92c32149dd014f171f39a962311397)
当a、b、c、d、j和k取不同值时,上述参数方程在平面上绘制各种复杂曲线,如图3.12所示。如下代码绘制图3.12。
B4_Ch3_2.m figure(1) subplot(3,2,1) a = 1; b = 80; c = 1; d = 80; j = 3; k = 3; plot_curve (a, b, c, d, j, k) subplot(3,2,2) a = 80; b = 1; c = 1; d = 80; j = 3; k = 3; plot_curve (a, b, c, d, j, k) subplot(3,2,3) a = 1; b = 80; c = 1; d = 80; j = 3; k = 4; plot_curve (a, b, c, d, j, k) subplot(3,2,4) a = 80; b = 1; c = 1; d = 80; j = 3; k = 4; plot_curve (a, b, c, d, j, k) subplot(3,2,5) a = 1; b = 80; c = 80; d = 80; j = 3; k = 4; plot_curve (a, b, c, d, j, k) subplot(3,2,6) a = 1; b = 80; c = 80; d = 1; j = 3; k = 4; plot_curve (a, b, c, d, j, k) function plot_curve (a, b, c, d, j, k) t = 0:0.001:2*pi; x = cos(a*t) - cos(b*t).^j; y = sin(c*t) - sin(d*t).^k; plot(x,y) daspect([1,1,1]) set(gca,'xtick',[]) set(gca,'ytick',[]) set(gca,'ztick',[]) axis off xlabel('x');ylabel('y');zlabel('z'); title({['a = ',num2str(a),'; b = ',num2str(b),... '; c = ',num2str(c),'; d = ',num2str(d),';'],... ['j = ',num2str(j),'; k = ',num2str(k)]}) end
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P113_3712466.jpg?sign=1738904091-mOo11qyyueBHAQLTT4Juth0qXBi3mstL-0-3dec22fe530ff7efea3a3c4a1a45e74b)
图3.12 平面参数方程绘制复杂曲线
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P114_3712468.jpg?sign=1738904091-rbNqcdMX1j6CfDLjDbxSCuM8SMx52rqn-0-fe894380e2aa5db7586840d0beb5b40d)
图3.12 (续)
一元一次函数y = f(x)= kx + c,用其一阶导数构造函数法向量和切向量。首先,构造如下二元F(x, y)函数:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P114_3712470.jpg?sign=1738904091-IA8VUDqCEzj2l9MDaDPL7NN8v8LRLSru-0-c1a4d4518abb0209fce7c9e013253578)
F(x, y)在(x0, y0)点处法向量,即平面上f(x)法向量n通过下式求解:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P114_3712471.jpg?sign=1738904091-gLxW4utilHsJLmlTUwGiMwinOrF1AYpC-0-332aa81b2e477a408a218b34c02d31f4)
如图3.13(a)所示,发现法向量n和点位置无关,因此,直线上任意一点法向量均可用上式表达。另外,法向量n即F(x, y)梯度向量。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P114_3712472.jpg?sign=1738904091-BjSDRB2i8Zt7ZTiANB65sgS6g6RjMlCW-0-b3137c5764a3aef088dc1574e38a3d55)
图3.13 平面直线法向量和切向量
已经知道函数f(x)一阶导数即切线斜率,因此,很容易用一阶导数df/dx来表达直线切线向量:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P114_3712473.jpg?sign=1738904091-IUAWKtqjsvfgFLC1oWnEGqfgUv3hEDZg-0-567b13261199ba3e7244077ea97aa596)
如图3.13(b)所示,同样发现,直线切向量和直线具体点坐标无关。图3.1 4展示了另外一种法向量和切向量定义。图中向量方向和图3.13相反。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P115_3712475.jpg?sign=1738904091-id0uw5ym5acpzcCAGXJ6z4WWmqJixPF4-0-158b8eb46e19920a3d0926e72f7e24cb)
图3.14 平面直线法向量和切向量,另外一种定义
如图3.15所示,平面内任意一点Q(xQ, yQ)到直线ax + by + c = 0距离为d,d计算式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P115_3712476.jpg?sign=1738904091-RseBFc9V1hV7aZp6TJ16wyXiglEDzekR-0-73177be296fdb020fd25144777e5bb07)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P115_3712477.jpg?sign=1738904091-OWkBrrQNpbTPryEOoEkUy5UQ29CbCrde-0-33f57949617edf827333d07874a0dff0)
图3.15 平面任意一点到直线距离
有兴趣的读者用上一章投影内容介绍方法来推导得到上式。
过空间一点和已知直线平行直线唯一,即一点和空间向量确定一条直线。如图3.16给出空间点A坐标为(x0, y0, z0),直线切线向量τ = [m, n, p]T。P(x, y, z)为直线上任意一点,向量PA(x – x0, y – y0, z –z0)T 平行于τ,由此得到下式:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P115_3712478.jpg?sign=1738904091-IJyinbfScob4eM8RQWENLnVgyzMLPxjM-0-53fe71563389798cc1d806eadd8856bb)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P115_3712479.jpg?sign=1738904091-HdFT1tUhVVGi0RQ1HLSaRRkwsy4Wmoc4-0-8f6095fd8f5b1d6934faeba7827c7b7b)
图3.16 空间直线定义
上式类似丛书第一册第5章中介绍空间直线定义方法。明显区别是,这里明确了直线方向向量和直线本身关系。引入比例系数t,可构造如下方程:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P116_3712481.jpg?sign=1738904091-jcm7CPHvFrRxpyehAPtGI7Kchd0fFGbN-0-7221df567feac8aa8da8ff2e10c0beb9)
上式,适用于m、n或p为0情况。比例系数t便是空间直线参数方程变量。